Matematika - 7.Kombinatorika, pravděpodobnost, binomická věta
Autor:

Binomická věta, její zápis, souvislost s Pascalovým trojúhelníkem, vyjádření k-tého členu binomického rozvoje
Princip matematické indukce, vysvětlení principu, způsoby použití
Základy pravděpodobnosti, pojem pravděpodobnosti, základní vlastnosti
Variace, permutace, kombinace, charakteristika kombinat. skupin, vzorce vyjadřující jejich počet
Úpravy výrazů s kombinačními čísly a faktoriály, faktoriál, kombinační číslo, Pascalův trojůhelník


Řešte v R
příklad

Řešte v R
příklad

Řešte v R
příklad

Dokažte vzorec
příklad

Kolikátý člen v rozvoji výrazu (2x2-1/x)8 obsahuje x7

Určete v rozvoji výrazu (2x2-3/x)6 absolutní člen

Zjistěte, zda v rozvoji výrazu existuje absolutní člen
příklad

Vypočtěte
příklad

Dokažte
příklad

Dokažte matematickou indukcí vzorec pro součet prvních n členů aritmetické posloupnosti

Dokažte 1.2 + 2.3 + 3.4 + ……………n.(n+1) = n.(n + 1).(n + 2) / 3

Dokažte matematickou indukcí, že pro počet úhlopříček v konvexním n-úhelníku platí
příklad

Jaká je pravděpodobnost, že při 2 hodech dvěma kostkami padnou nejdříve 2 šestky a potom součet 6?

V bedně je 10 součástek ze kterých jsou 3 vadné. Jaká je pravděpodobnost, že mezi 5 náhodně vybranými součástkami budou nejvýše 2 vadné?

Ve třech lavicích vedle sebe sedí 6 žáků. Jaká je pravděpodobnost, že při vyvolání 2 z nich to budou sousedi?

Házíme 10x kostkou. Jaká je pravděpodobnost, že
a) poprvé, podruhé, potřetí padne 6, v ostatních hodech ne
b) 6 padne právě 3x

Kolika přímkami lze spojit 10 různých bodů, jestliže
a) žádné 3 neleží v jedné přímce
b) 4 leží na jedné přímce

Z určitého počtu uchazečů mají být vybráni 3. Kdyby bylo uchazečů o 2 méně, zmenšil by se počet možností výběru 5x. Kolik je uchazečů?

V prostoru je dáno 10 různých bodů, z nichž žádné 3 neleží v jedné přímce, žádné 4 neleží v jedné rovině
a) Kolik rovin lze jimi určit
b) Kolik rovin lze jimi určit, leží-li 4 body v jedné rovině

Kolik přirozených čísel menších než 10 000 lze sestavit z cifer 0, 2, 4, 6, aniž by se cifry v jednom čísle opakovaly?